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	Abstract	
In this paper we extend the study of the edge-to-vertex geodetic number, the edge covering number and their corresponding forcing number of a graph.  The goal of this paper is to find the relation between the above four. The forcing edge-to-vertex geodetic number was introduced and studied in [4] and the forcing edge covering number of a graph was studied in [2]. Also, we prove for every integers a, b, c and d with 0 ≤ a ≤ b < c < d, and c > b + 1, d > b + c – a, there exists a connected graph G such that fev(G) = a, fß (G) = b, gev(G) = c and ß (G) = d.
Keywords: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number, edge covering number, forcing edge-covering number. 
AMS Subject Classification: 05C12.
  1.Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic definitions and terminologies we refer to [1]. An edge covering of G is a subset L  E(G) such that each vertex of G is end of some edge in L. The number of edges in a minimum edge covering of G, denoted by ß (G) is the edge covering number of G. A subset T  L is called a forcing subset for L if L is the unique minimum edge covering containing T. A forcing subset for L of minimum cardinality is a minimum forcing subset of L. The forcing edge covering number of L, denoted by fß (L), is the cardinality of a minimum forcing subset of L. The forcing edge covering number of G, denoted by fß (G), is fß (G) = min {fß (L)}, where the minimum is taken over all minimum edge coverings L in G.

 A set S  E(G)  is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of G. A subset T  S is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by fev(S), is the cardinality of a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of G, denoted by fev(G), is fev(G) = min{fev(S)}, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G. In this paper we study the relation between the forcing concept of the minimum edge-to-vertex geodetic set and the minimum edge covering of a connected graph. Throughout the following G denotes a connected graph with at least three vertices. The following Theorems are used in the sequel.
Theorem 1.1 [2]   Every end-edge of a connected graph G belongs to every edge  covering of G.
Theorem 1.2 [2]   Let G be a connected graph with size q. Then ß (G) = q if and only if 
                                   G   is a star.
Theorem  1.3  [2]     For the star G = K1,q ( q ≥ 2),  fß (G)= 0.
Theorem 1.4 [2]   Let G be a connected graph and W be the set of all edge covering  
                               edges of G. Then fß (G) ≤ ß (G) – | W |.
Theorem 1.5 [2]   Let G be a connected graph. Then
a) fß (G) = 0 if and only if G has a unique minimum edge covering.
b) fß (G) = 1 if and only if G has at least two minimum edge coverings, one of which is a unique minimum edge covering containing one of its elements, and
c)  fß (G) =  ß (G) if and only if no minimum edge covering of G is the unique minimum  edge covering containing any of its proper subsets.
Theorem 1.6 [4]    For any connected graph G of size q ≥ 2, gev(G) = q if and only if G is a   star.
Theorem 1.7 [4]    Every end-edge of a connected graph G belongs to every edge-to-vertex  geodetic set of G.
Theorem 1.8 [4]    For a non-trivial tree G = T of size q ≥ 2,  fev(G)  = 0.
Theorem1.9 [4]   Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G.   
                           Then fev(G)  ≤ gev(G)  – | W |.
Theorem 1.10 [4]   Let G be a connected graph. Then
a) fev(G) = 0 if and only if G has a unique minimum edge-to-vertex geodetic set.
b) fev(G) = 1 if and only if G has at least two minimum edge-to-vertex geodetic sets, one of which is a unique minimum edge-to-vertex geodetic set containing one of its elements, and
c) fev(G) =  gev(G) if and only if no minimum edge-to-vertex geodetic set of G is the unique minimum  edge-to-vertex geodetic set containing any of its proper subsets.
Theorem 2.1.   For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G such that fev(G) = fß (G) = 0; and gev(G) = a and ß (G) = b.
Proof.   If a = b, let G=K1,a. Then by Theorems 1.2 and 1.6, gev(G) = a =  ß (G) and by Theorems 1.8 and 1.3, fev(G) = fß (G) = 0. For a < b, let P: x1, x2, x3, x4 be a path of length 3. For each integer i with 1 ≤ i ≤ b – a –1, let Fi : ui ,vi  be the path of order 2. Let G be the graph obtained from the graphs P and Fi (1 ≤ i ≤ b – a –1) by adding the 2(b – a –1) edges x1ui and x4vi for 1 ≤ i ≤ b – a –1 and also adding the end-edges x1z and x4zj (1 ≤ j ≤ a –1). The graph G is shown in Figure 2.1. 
Let Z = {x1z, x4z1, x4z2, …, x4za-1} be the set of all end-edges of G. Then by Theorem 1.7, Z is a subset of every edge-to-vertex geodetic set of G. But it is clear that Z is an edge-to-vertex geodetic set of G. Since Z is the unique minimum edge-to-vertex geodetic set of G we have gev(G) = a and hence by Theorem 1.10(a) fev(G) = 0. Since the edges uivi (1≤ i ≤ b – a – 1) do not lie on Z, we see that Z is not an edge covering set of G. Now it is easily seen that W = Z ∪ {x2x3, u1v1, u2v2, …, ub-a-1vb-a-1} is the unique minimum edge covering set of G such that ß (G) = | W | = b and hence by Theorem 1.5(a),  fß (G) = 0.  	                                                                                   ∎
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Theorem 2.2.   For every integers a, b and c with 0 ≤ a < b < c and b> a + 1, c = a +b there exists a connected graph G such that fev(G) = 0 ,  fß (G) = a,  gev(G) = b and   ß(G) = c.
Proof.    We consider two cases.
Case 1.  a = 0. Then the graph G constructed in Theorem 2.1 satisfies the requirement of the theorem.
Case 2.    a ≥ 1. Let P4 : x, y, v1, z be a path of order 4. Now add b – 1 new vertices z1, z2, …, zb-1 to P4 and join each to z, there by producing a tree T. Then add a – 1 new vertices v2, v3,…, va–1, va to T and join each to both y and z, and obtaining the graph G of figure 2.2.


 Let Z = {xy, zz1, zz2, …, zzb-1} be the set of all end-edges of G. By Theorem 1.7, Z is a subset of every edge-to-vertex geodetic set of G. It is easily verified that Z is the unique minimum edge-to-vertex geodetic set of G and so gev(G) = b and hence by Theorem 1.10(a) fev(G) = 0. Next we show that ß (G) = c. Let S be any edge covering set of G. Then by Theorem 1.1, Z S. It is clear that Z is not an edge covering set of G. Let Hi = {hi, ki}, where hi = yvi and ki = zvi (1 ≤ i ≤ a). We observe that every edge covering of G must contain at least one vertex from each Hi (1 ≤ i ≤ a) so that ß (G) ≥ b + a = c. Now, S1 = Z ∪ {h1, h2, …, ha} is an edge covering set of G so that ß (G) ≤  b + a = c. Thus ß (G) = c. Since every edge covering contains Z, it follows from Theorem 1.4, fß  (G) ≤ ß (G) –  | Z | = c – b = a. Now, since ß (G) = c and every edge covering of G contains Z, it is easily seen that every edge covering S is of the form Z ∪ {d1, d2, …, da} ,where di Hi (1 ≤ i ≤ a). Let T be any proper subset of S with | T | < a. Then it is clear that there exists some j such that T ∩ Hj = Φ, which shows that fß (G) = a.  	           
                                                                                                                                                                                        ∎                  
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Theorem 2.3. For every integers a, b with 0 ≤ a < b and b > a + 1, there exists a connected graph G such that fev(G) = fß (G) = a,  gev(G) = ß (G) =  b.
Proof.   We consider two cases.
Case 1. a = 0. Let G=K1,b. Then by Theorems 1.6 and 1.2, gev(G) = b = ß (G)   and  by Theorems 1.8 and 1.3, fev(G) = fß (G) = 0.
Case 2.   a ≥ 1. Let P4 : x, y, v1, z be a path of order 4. Now add b – a – 1 new vertices z1, z2, …, zb-a-1 to P4 and join each to z, there by producing a tree T. Let G be the graph obtained from T by adding a – 1 new vertices v2, v3, …, va-1, va  and join each to both y and z. Also, join the vertices y and z, and is shown in figure 2.3.


 Let Z = {xy, zz1, zz2, …, zzb-a-1} be the set of all end- edges of G. Let S be any edge-to-vertex geodetic set of G. Then by Theorem 1.7, ZS. First we show that gev(G) = b. Clearly Z is not an edge-to-vertex geodetic set of G. Let Hi = {hi, ki}, where hi = yvi and ki = zvi (1 ≤ i ≤ a). We observe that every edge-to-vertex geodetic set of G must contain at least one vertex from each Hi (1 ≤ i ≤ a). Thus gev(G) ≥ b  – a + a = b. On the other hand since the set S = Z ∪ {k1, k2, k3,…, ka} is an edge-to-vertex geodetic set of G, it follows that  gev(G) ≤    | S | = b. Hence gev(G) = b. Next we show that fev(G) = a. By Theorem 1.7, every edge-to-vertex geodetic set of G contains Z and so it follows from Theorem 1.9, fev(G)  ≤ gev(G) –  |Z| = a. Now, since gev(G) = b and every gev-set of G contains Z, it is easily seen that every gev-set S is of the form Z ∪ {c1, c2, c3, … ca}, where ci  Hi (1 ≤ i ≤ a). Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that T ∩ Hj = Φ, which shows that fev(G) = a. By the similar way we can prove ß (G) = b and fß (G) = a. 	                                                                                  ∎                                                                       
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Theorem 2.4.   For every integers a, b, c and d with 0 ≤ a ≤ b < c < d, and c > b + 1, d > b + c – a, there exists a connected graph G such that fev(G) = a, fß (G) = b, gev(G) = c and ß (G) = d.
Proof.  We consider three cases.
Case 1. 0 = a = b. Then the graph G constructed in Theorem 2.1 satisfies the requirement of this theorem.
Case 2. 0 = a < b. Then the graph G constructed in Theorem 2.2 satisfies the requirement of this theorem.
Case 3.  0 < a < b < c < d, a ≥ 1. Let Pd : x1, x2, x3, x4, x5, x6, x7, x8 be a path of order 8. Now add c – a – 1 new vertices z1, z2, …, zc-a-1 to Pd and join z1 to x3, z2 to x5 and z3, z4, …, zc-a-1 to x8, there by producing a tree T.  Then add new vertices y1, y2, …, ya –1, ya to T and join each to both x2 and x3. Also add b – a – 1 new vertices n1, n2, …, nb-a-1 to T  and join each to both x3 and x5. For each integer i with 1 ≤ i  ≤  d – (b+ c – a + 1), let Fi : ui,vi be the path of order 2. Let G be the graph obtained from the graphs T and Fi (1 ≤  i  ≤ d – (b+ c – a + 1)) by adding the 2 (d – (b+ c – a +1)) edges x5uj and x8vj for 1 ≤  j  ≤ d – (b+ c – a +1). The graph G is shown in Figure 2.4.




 Let Z = {x1x2, x3z1, x5z2, x8z3, x8z4, …, x8zc-a-1} be the set of all end-edges of G. Let S be any edge-to-vertex geodetic set of G. Then by Theorem 1.7, Z S. First we show that gev(G) = c. Clearly Z is not an edge-to-vertex geodetic set of G. Let Hi  = {hi, ki}, where hi = x2yi and ki = x3yi (1 ≤ i ≤ a). We observe that every edge-to-vertex geodetic set of G must contain at least one vertex from each Hi (1 ≤ i ≤ a). Thus gev(G) ≥ c – a + a = c. On the other hand, any edge-to-vertex geodetic set is of the form S = Z ∪ {c1, c2, c3, …, ca}, where ci  Hi (1≤  i ≤ a). Then as in earlier theorems it can be seen that fev(G) = a and gev(G) = c. Let Qi = {ri, si}, where ri = x3ni and si = x5ni (1 ≤ i ≤ b – a –1).  It is clear that any edge covering set is of the form W = Z ∪ {u1v1, u2v2, …, u d- (b+ c – a+1) vd- (b+ c – a+1)} ∪ {c1, c2, c3, …, ca} ∪ {d1, d2, d3, …, db-a-1}, where ciHi  (1 ≤ i ≤ a) and dj Qi (1 ≤ j ≤ b – a – 1). Then as in earlier theorems it can be seen that fß (G) = b and ß (G) = d.  	                                                                            ∎                                                                                                                                                                                                                                                                                       
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